lomas_client package
Subpackages
Submodules
lomas_client.client module
- class lomas_client.client.Client(url: str, user_name: str, dataset_name: str)[source]
Bases:
object
Client class to send requests to the server Handle all serialisation and deserialisation steps
- diffprivlib_query(pipeline: Pipeline, feature_columns: List[str], target_columns: List[str] | None = None, test_size: float = 0.2, test_train_split_seed: int = 1, imputer_strategy: str = 'drop', dummy: bool = False, nb_rows: int = 100, seed: int = 42) Pipeline [source]
This function trains a DiffPrivLib pipeline on the sensitive data and return a trained Pipeline.
- Parameters:
pipeline (sklearn.pipeline) –
DiffPrivLib pipeline with three conditions: - The pipeline MUST start with a models.StandardScaler.
Otherwise a PrivacyLeakWarning is raised by DiffPrivLib library and is treated as an error in lomas server.
random_state fields can only be int (RandomState will not work).
accountant fields must be None.
Note: as in DiffPrivLib, avoid any DiffprivlibCompatibilityWarning to ensure that the pipeline does what is intended.
feature_columns (list[str]) – the list of feature column to train
target_columns (list[str], optional) – the list of target column to predict May be None for certain models.
test_size (float, optional) – proportion of the test set Defaults to 0.2.
test_train_split_seed (int, optional) – seed for random train test split Defaults to 1.
imputer_strategy (str, optional) – imputation strategy. Defaults to “drop”. “drop”: will drop all rows with missing values “mean”: will replace values by the mean of the column values “median”: will replace values by the median of the column values “most_frequent”: : will replace values by the most frequent values
dummy (bool, optional) – Whether to use a dummy dataset. Defaults to False.
nb_rows (int, optional) – The number of rows in the dummy dataset. Defaults to DUMMY_NB_ROWS.
seed (int, optional) – The random seed for generating the dummy dataset. Defaults to DUMMY_SEED.
- Returns:
A trained DiffPrivLip pipeline
- Return type:
Optional[Pipeline]
- estimate_diffprivlib_cost(pipeline: Pipeline, feature_columns: List[str] = [''], target_columns: List[str] = [''], test_size: float = 0.2, test_train_split_seed: int = 1, imputer_strategy: str = 'drop') dict [source]
This function estimates the cost of executing a DiffPrivLib query.
- Parameters:
pipeline (sklearn.pipeline) –
DiffPrivLib pipeline with three conditions: - The pipeline MUST start with a models.StandardScaler.
Otherwise a PrivacyLeakWarning is raised by DiffPrivLib library and is treated as an error in lomas server.
random_state fields can only be int (RandomState will not work).
accountant fields must be None.
Note: as in DiffPrivLib, avoid any DiffprivlibCompatibilityWarning to ensure that the pipeline does what is intended.
feature_columns (list[str]) – the list of feature column to train
target_columns (list[str], optional) – the list of target column to predict May be None for certain models.
test_size (float, optional) – proportion of the test set Defaults to 0.2.
test_train_split_seed (int, optional) – seed for random train test split Defaults to 1.
imputer_strategy (str, optional) – imputation strategy. Defaults to “drop”. “drop”: will drop all rows with missing values “mean”: will replace values by the mean of the column values “median”: will replace values by the median of the column values “most_frequent”: : will replace values by the most frequent values
- Returns:
A dictionary containing the estimated cost.
- Return type:
Optional[dict[str, float]]
- estimate_opendp_cost(opendp_pipeline: Measurement, fixed_delta: float | None = None) dict[str, float] | None [source]
This function estimates the cost of executing an OpenDP query.
- Parameters:
opendp_pipeline (dp.Measurement) – The OpenDP pipeline for the query.
fixed_delta (Optional[float], optional) – If the pipeline measurement is of type “ZeroConcentratedDivergence” (e.g. with make_gaussian) then it is converted to “SmoothedMaxDivergence” with make_zCDP_to_approxDP (See Smartnoise-SQL postprocessing documentation.). In that case a fixed_delta must be provided by the user. Defaults to None.
- Returns:
A dictionary containing the estimated cost.
- Return type:
Optional[dict[str, float]]
- estimate_smartnoise_cost(query: str, epsilon: float, delta: float, mechanisms: dict[str, str] = {}) dict[str, float] | None [source]
This function estimates the cost of executing a SmartNoise query.
- Parameters:
query (str) – The SQL query to estimate the cost for. NOTE: the table name is df, the query must end with “FROM df”.
epsilon (float) – Privacy parameter (e.g., 0.1).
delta (float) – Privacy parameter (e.g., 1e-5). mechanisms (dict[str, str], optional): Dictionary of mechanisms for the query See Smartnoise-SQL postprocessing documentation. Defaults to {}.
- Returns:
A dictionary containing the estimated cost.
- Return type:
Optional[dict[str, float]]
- get_dataset_metadata() Dict[str, int | bool | Dict[str, str | int]] | None [source]
This function retrieves metadata for the dataset.
- Returns:
A dictionary containing dataset metadata.
- Return type:
Optional[Dict[str, Union[int, bool, Dict[str, Union[str, int]]]]]
- get_dummy_dataset(nb_rows: int = 100, seed: int = 42) DataFrame | None [source]
This function retrieves a dummy dataset with optional parameters.
- Parameters:
nb_rows (int, optional) –
The number of rows in the dummy dataset.
Defaults to DUMMY_NB_ROWS.
seed (int, optional) –
The random seed for generating the dummy dataset.
Defaults to DUMMY_SEED.
- Returns:
A Pandas DataFrame representing the dummy dataset.
- Return type:
Optional[pd.DataFrame]
- get_initial_budget() dict[str, float] | None [source]
This function retrieves the initial budget.
- Returns:
A dictionary containing the initial budget.
- Return type:
Optional[dict[str, float]]
- get_previous_queries() List[dict] | None [source]
This function retrieves the previous queries of the user.
- Raises:
ValueError – If an unknown query type is encountered during deserialization.
- Returns:
A list of dictionary containing the different queries on the private dataset.
- Return type:
Optional[List[dict]]
- get_remaining_budget() dict[str, float] | None [source]
This function retrieves the remaining budget.
- Returns:
A dictionary containing the remaining budget.
- Return type:
Optional[dict[str, float]]
- get_total_spent_budget() dict[str, float] | None [source]
This function retrieves the total spent budget.
- Returns:
A dictionary containing the total spent budget.
- Return type:
Optional[dict[str, float]]
- opendp_query(opendp_pipeline: Measurement, fixed_delta: float | None = None, dummy: bool = False, nb_rows: int = 100, seed: int = 42) dict | None [source]
This function executes an OpenDP query.
- Parameters:
opendp_pipeline (dp.Measurement) – The OpenDP pipeline for the query.
fixed_delta (Optional[float], optional) – If the pipeline measurement is of type “ZeroConcentratedDivergence” (e.g. with make_gaussian) then it is converted to “SmoothedMaxDivergence” with make_zCDP_to_approxDP (See Smartnoise-SQL postprocessing documentation.). In that case a fixed_delta must be provided by the user. Defaults to None.
dummy (bool, optional) – Whether to use a dummy dataset. Defaults to False.
nb_rows (int, optional) – The number of rows in the dummy dataset. Defaults to DUMMY_NB_ROWS.
seed (int, optional) – The random seed for generating the dummy dataset. Defaults to DUMMY_SEED.
- Raises:
Exception – If the server returns dataframes
- Returns:
A Pandas DataFrame containing the query results.
- Return type:
Optional[dict]
- smartnoise_query(query: str, epsilon: float, delta: float, mechanisms: dict[str, str] = {}, postprocess: bool = True, dummy: bool = False, nb_rows: int = 100, seed: int = 42) dict | None [source]
This function executes a SmartNoise query.
- Parameters:
query (str) – The SQL query to execute. NOTE: the table name is df, the query must end with “FROM df”.
epsilon (float) – Privacy parameter (e.g., 0.1).
delta (float) – Privacy parameter (e.g., 1e-5).
mechanisms (dict[str, str], optional) –
Dictionary of mechanisms for the query See Smartnoise-SQL postprocessing documentation.
Defaults to {}.
postprocess (bool, optional) –
Whether to postprocess the query results. See Smartnoise-SQL postprocessing documentation.
Defaults to True.
dummy (bool, optional) –
Whether to use a dummy dataset.
Defaults to False.
nb_rows (int, optional) –
The number of rows in the dummy dataset.
Defaults to DUMMY_NB_ROWS.
seed (int, optional) –
The random seed for generating the dummy dataset.
Defaults to DUMMY_SEED.
- Returns:
A Pandas DataFrame containing the query results.
- Return type:
Optional[dict]
- class lomas_client.client.DPLibraries(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]
Bases:
StrEnum
Enum of the DP librairies used in the server WARNING: MUST match those of lomas_server
- DIFFPRIVLIB = 'diffprivlib'
- OPENDP = 'opendp'
- SMARTNOISE_SQL = 'smartnoise_sql'
- lomas_client.client.error_message(res: Response) str [source]
Generates an error message based on the HTTP response.
- Parameters:
res (requests.Response) – The response object from an HTTP request.
- Returns:
- A formatted string describing the server error,
including the status code and response text.
- Return type:
str