lomas_server.data_connector package
Submodules
lomas_server.data_connector.data_connector module
- class lomas_server.data_connector.data_connector.DataConnector(*, metadata: Metadata, df: Annotated[DataFrame, PlainSerializer(func=dataframe_to_dict, return_type=PydanticUndefined, when_used=always)] | None = None)[source]
Bases:
BaseModel,ABCOverall access to sensitive data.
- property datetime_columns: list[str]
- df: Annotated[DataFrame, PlainSerializer(func=dataframe_to_dict, return_type=PydanticUndefined, when_used=always)] | None
- property dtypes: dict[str, str]
- abstract get_pandas_df() DataFrame[source]
Get the data in pandas dataframe format.
- Returns:
The pandas dataframe for this dataset.
- Return type:
pd.DataFrame
- get_polars_lf() LazyFrame[source]
Get the data in polars lazyframe format.
- Returns:
The polars lazyframe for this dataset.
- Return type:
pl.LazyFrame
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- lomas_server.data_connector.data_connector.get_column_dtypes(metadata: Metadata) tuple[dict[str, str], list[str]][source]
Extracts and returns the column types from the metadata.
- Parameters:
metadata (Metadata) – The metadata.
- Returns:
- dict: The dictionary of the column type.
list: The list of columns of datetime type
- Return type:
Tuple[Dict[str, str], List[str]]
lomas_server.data_connector.factory module
lomas_server.data_connector.in_memory_connector module
- class lomas_server.data_connector.in_memory_connector.InMemoryConnector(*, metadata: Metadata, df: Annotated[DataFrame, PlainSerializer(func=dataframe_to_dict, return_type=PydanticUndefined, when_used=always)] | None = None, type: Literal['InMemoryConnector'] = 'InMemoryConnector')[source]
Bases:
DataConnectorDataConnector for a dataset created from an in-memory pandas DataFrame.
- get_pandas_df() DataFrame[source]
Get the data in pandas dataframe format.
- Returns:
pandas dataframe of dataset (a copy)
- Return type:
pd.DataFrame
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: Literal['InMemoryConnector']
lomas_server.data_connector.path_connector module
- class lomas_server.data_connector.path_connector.PathConnector(*, metadata: Metadata, df: Annotated[DataFrame, PlainSerializer(func=dataframe_to_dict, return_type=PydanticUndefined, when_used=always)] | None = None, type: Literal['PathConnector'] = 'PathConnector', dataset_path: Annotated[Path, PathType(path_type=file)] | HttpUrl)[source]
Bases:
DataConnectorDataConnector for dataset located at constant path.
Path can be local or remote (http).
- dataset_path: Annotated[Path, PathType(path_type=file)] | HttpUrl
- get_pandas_df() DataFrame[source]
Get the data in pandas dataframe format.
- Raises:
InternalServerException – If the file format is not supported.
- Returns:
pandas dataframe of dataset
- Return type:
pd.DataFrame
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: Literal['PathConnector']
lomas_server.data_connector.s3_connector module
- class lomas_server.data_connector.s3_connector.S3Connector(*, metadata: Metadata, df: Annotated[DataFrame, PlainSerializer(func=dataframe_to_dict, return_type=PydanticUndefined, when_used=always)] | None = None, type: Literal['S3Connector'] = 'S3Connector', credentials: DSS3Access)[source]
Bases:
DataConnectorDataConnector for dataset in S3 storage.
- property bucket: str
- credentials: DSS3Access
- get_pandas_df() DataFrame[source]
Get the data in pandas dataframe format.
- Raises:
InternalServerException – If the dataset cannot be read.
- Returns:
pandas dataframe of dataset
- Return type:
pd.DataFrame
- property key: str
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: Literal['S3Connector']
Module contents
- class lomas_server.data_connector.DataConnector(*, metadata: Metadata, df: Annotated[DataFrame, PlainSerializer(func=dataframe_to_dict, return_type=PydanticUndefined, when_used=always)] | None = None)[source]
Bases:
BaseModel,ABCOverall access to sensitive data.
- property datetime_columns: list[str]
- df: Annotated[DataFrame, PlainSerializer(func=dataframe_to_dict, return_type=PydanticUndefined, when_used=always)] | None
- property dtypes: dict[str, str]
- abstract get_pandas_df() DataFrame[source]
Get the data in pandas dataframe format.
- Returns:
The pandas dataframe for this dataset.
- Return type:
pd.DataFrame
- get_polars_lf() LazyFrame[source]
Get the data in polars lazyframe format.
- Returns:
The polars lazyframe for this dataset.
- Return type:
pl.LazyFrame
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class lomas_server.data_connector.InMemoryConnector(*, metadata: Metadata, df: Annotated[DataFrame, PlainSerializer(func=dataframe_to_dict, return_type=PydanticUndefined, when_used=always)] | None = None, type: Literal['InMemoryConnector'] = 'InMemoryConnector')[source]
Bases:
DataConnectorDataConnector for a dataset created from an in-memory pandas DataFrame.
- df: Annotated[pd.DataFrame, PlainSerializer(dataframe_to_dict)] | None
- get_pandas_df() DataFrame[source]
Get the data in pandas dataframe format.
- Returns:
pandas dataframe of dataset (a copy)
- Return type:
pd.DataFrame
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: Literal['InMemoryConnector']
- class lomas_server.data_connector.PathConnector(*, metadata: Metadata, df: Annotated[DataFrame, PlainSerializer(func=dataframe_to_dict, return_type=PydanticUndefined, when_used=always)] | None = None, type: Literal['PathConnector'] = 'PathConnector', dataset_path: Annotated[Path, PathType(path_type=file)] | HttpUrl)[source]
Bases:
DataConnectorDataConnector for dataset located at constant path.
Path can be local or remote (http).
- dataset_path: Annotated[Path, PathType(path_type=file)] | HttpUrl
- df: Annotated[pd.DataFrame, PlainSerializer(dataframe_to_dict)] | None
- get_pandas_df() DataFrame[source]
Get the data in pandas dataframe format.
- Raises:
InternalServerException – If the file format is not supported.
- Returns:
pandas dataframe of dataset
- Return type:
pd.DataFrame
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: Literal['PathConnector']
- class lomas_server.data_connector.S3Connector(*, metadata: Metadata, df: Annotated[DataFrame, PlainSerializer(func=dataframe_to_dict, return_type=PydanticUndefined, when_used=always)] | None = None, type: Literal['S3Connector'] = 'S3Connector', credentials: DSS3Access)[source]
Bases:
DataConnectorDataConnector for dataset in S3 storage.
- property bucket: str
- credentials: DSS3Access
- df: Annotated[pd.DataFrame, PlainSerializer(dataframe_to_dict)] | None
- get_pandas_df() DataFrame[source]
Get the data in pandas dataframe format.
- Raises:
InternalServerException – If the dataset cannot be read.
- Returns:
pandas dataframe of dataset
- Return type:
pd.DataFrame
- property key: str
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: Literal['S3Connector']